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1. Introduction  

Synthetic cannabinoids (SCs) are chemical compounds that were developed to bind to the 

cannabinoid (CB) receptors within the human body as either agonists or antagonists of receptor 

function.
1–6

 There are 2 CB receptor subtypes in humans: cannabinoid receptor 1 (CB1) and 

cannabinoid receptor 2 (CB2). CB1, or the central cannabinoid receptor, is expressed mainly in 

the central nervous system while CB2 is known as the peripheral CB receptor and is mainly 

expressed in the peripheral nervous system by immune cells primarily in the thymus, bone 

marrow, and spleen.
7
 Originally developed to treat a wide variety of diseases from obesity to 

cancer therapeutics, SCs have more recently been marketed as recreational drugs in the form of 

herbal smoking mixtures.
8–17

 These drugs have names such as Spice Gold, Spice Silver, and 

Yucatan Fire and are legal in many countries and states (Fig. 1).
18

 The marketing of these SCs 

has led to disastrous effects, as these compounds tend to be much more potent than traditional 

cannabis.
12,17

 Cannabis sativa contains tetrahydrocannabinol (THC) as the active psychotropic 

ingredient and has an affinity of 10 nM for CB1 and 24 nM for CB2. As Spice and similar 

products contain compounds specifically developed to bind to the CB receptors, their affinity for 

the CB receptors is much greater. For example, the first-generation synthetic cannabinoid  

HU-210 has affinities of 0.061 nM and 0.52 nM for CB1 and CB2, respectively, which is 

approximately 164 and 46 times, respectively, tighter than THC for the same receptors.
12,17

 This 

increase in affinity is proportional to the dramatic increase in potency observed with these 

compounds.  

 

Fig. 1   Varieties of herbal smoking mixtures laced with synthetic cannabinoids
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Until recently, many of these herbal mixtures were perfectly legal and available for purchase at 

many gas stations, convenience stores, and through the Internet.
1,19,20

 Abuse rates have 

skyrocketed over the past few years: A 2010 poll by the US Drug Enforcement Administration 

showed that 35% of juveniles tested for drugs tested positive for SCs, and in 2011, 11% of high 

school seniors admitted to trying SC-laced herbal blends.
21

 Moreover, SC abuse is rampant 

within the armed forces, with more than half of the tested personnel showing a positive result in 

2012.
22

 These data have led to a widespread push to make these mixtures illegal. This aim is not 

easily achieved, as the manufacturers are constantly modifying the compounds at various 

substituent points to avoid detection by the authorities (Fig. 2). Although it is possible to detect 

SCs in serum and oral fluid, a library of known compounds is needed to screen the tests for all of 

the known SCs.
23,24

 Therefore, this method does not keep pace with the ever-increasing 

variations of SCs, as the compounds must be known to be detected, leading to a long turnaround 

time, in turn leading to a backlog of tens of thousands of samples.  

 

Fig. 2   Basic chemical structures of the 7 different synthetic cannabinoid groups. The R groups are 

positions at which substituent variants are possible. 

To circumvent the previously described detection limitations, a new detection methodology must 

be developed. An attractive approach would be to harness the CB binding capabilities of the CB 

receptor proteins that would negate the need for a library of SC compounds as a reference for 

detection. Thus, this approach would enable enforcement to keep pace with the development of 

novel SCs by drug manufacturers. 

Clearly, the development and characterization of such a detection system would provide 

numerous advantages over the currently available methods including 1) immediate turnaround 

time with a simple yes or no output, 2) no need to look for specific or known SCs, as any 

NaphthylmethylindenesNaphthoylindoles Naphthylmethylindoles Naphthoylpyrroles

Phenylacetylindoles Cyclohexylphenols Classical Cannabinoids
(Dibenzopyrans)
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compound that binds the receptor will give a positive hit, and 3) enforcement would be able to 

keep pace with the development of novel SCs for recreational use. 

There has been recent success using receptor-protein-based fluorescent biosensors to measure 

ligand/protein interactions.
25

 These sensors employ quantum dots (QDs) and dark quenchers 

(DQs) to monitor the binding of a ligand to a protein. The protein is conjugated to the QD while 

the DQ molecule is conjugated to a receptor ligand. In this sensor, the DQ/low-affinity ligand 

binds to the protein QD complex and the fluorescence of the QD is quenched. Subsequent 

binding of the higher affinity ligand of interest displaces the quencher complex and the 

fluorescence of the QD can be measured (Fig. 3). Medintz et al. constructed such a sensor in 

2003 to monitor maltose binding to the maltose binding protein.
25 

 

Fig. 3   QD/DQ-based biosensor developed for maltose detection by Medintz et al.
25

  

A properly designed ligand-DQ system that is highly robust and functional is critical to the 

development of both the flouroanalytical and bionanoelectronic synthetic cannabinoid detection 

platforms. The primary design requirements of the ligand-DQ conjugate are 2-fold.  

1. A ligand whose affinity for the CB2 receptor protein is in a range such that it is readily 

displaced by the majority of synthetic cannabinoids while not being competitively 

displaced by other molecules (noncannabinoids) in the system. 

2. Transport a DQ molecule within fluorescence resonance energy transfer (FRET) coupling 

range of the fluorescent QD. 

We have successfully synthesized and characterized several synthetic CB-DQ conjugates for the 

use in fluorescence-based cannabinoid detection platforms. Specifically, the DQ QSY 7 was 

reacted with the CB receptor ligand metabolites JWH 018 n-pentaoic acid and JWH 073  

n-butanoic acid to create 2 different DQ conjugates for future use in a receptor-based SC 

detection assay. To our knowledge, these conjugates are the first of their kind to be successfully 

synthesized. 
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2. Materials and Methods 

2.1 Chemicals 

Dimethylformamide (DMF), O-Benzotriazole-N,N,N',N'-tetramethyl-uronium-hexafluoro-

phosphate (HBTU), triethylamine (TEA), acetonitrile, and formic acid were purchased from 

Sigma-Aldrich (St. Louis, MO); JWH-018 pentanoic acid and JWH-073 butanoic acid were 

purchased from Cayman Chemical (Ann Arbor, MI); and QSY 7 amine was purchased from Life 

Technologies (Carlsbad, CA). All solvents were of high-performance liquid chromatography–

grade or higher and used without further purification. Ultrapure milli-Q water was used for all 

experiments.   

2.2 Synthesis and Purification of JWH-018 Pentanoic Acid and JWH-073 Butanoic Acid 

to QSY 7 Amine Conjugates 

Synthesis: Molar equivalents and quantities of reagents used in the synthesis protocol are 

highlighted in Table 1. QSY 7 amine and JWH-018 or JWH-073 were each resuspended in  

500 mL of DMF and added to a 5-mL vial. HBTU was added to the vial, then the mixture was 

stirred vigorously for 5 min, after which TEA was added. After stirring for 4 h, the reactant to 

product conversion was monitored via thin layer chromatography (TLC) in 100% ethyl acetate. 

Purification: For product purification, the reaction was diluted 3× with ethyl acetate and filtered 

through celite. The excess solvent was removed under reduced pressure and dried under high 

vacuum.  

Table 1   Molar equivalents and quantities of reagents used in the synthesis protocol 

Compound Molar Equivalents 
Used 

(mmol) 
Molecular 

Weight 

Amount Added 

(mg) 

JWH-018 

pentanoic acid 
1 0.013 371.4 5 

JWH-073 

butanoic acid 
1 0.013 357.4 5 

   QSY 7 amine 1.2 0.0156 814.86 10 

TEA 3 0.039 101.19 4 

 

2.3 Liquid Chromatography Coupled Mass Spectrometry (LC-MS) Analysis of JWH-018 

Pentanoic Acid and JWH-073 Butanoic Acid to QSY 7 Amine Conjugates 

The overall purity of the Win55-212 extracts was analyzed via LC-MS. A single quadrupole 

Agilent 6130 mass spectrometer was used in conjunction with an Agilent 1200 series LC system 

(Agilent Technologies, Santa Clara, CA). The LC column was an Agilent Eclipse XDB C18 

column (150- × 4.6-mm interior diameter, 5-m particle size), maintained at 25 °C with a mobile 
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phase flow rate of 0.6 mL/min. Gradient elution mobile phases consisted of A (0.1% formic acid 

in water) and B (0.1% formic acid in acetonitrile) at pH 3.6. The gradient initially began at 0% B 

and remained isocratic until 2 min. The gradient increased linearly to 100% B from 2 to 50 min. 

Any remaining compounds were eluted from the column during a wash with 100% B from 50 to  

60 min. Detection wavelengths for are shown in Table 2 and are the maximum absorbance 

wavelengths given by the chemical suppliers. Quantification of the analytes was undertaken 

using positive scan mode with a molecular mass scan from 100 to 1,200 g/mol.  

Table 2   Detection wavelengths and expected masses of compounds used in this study 

Compound 
Detection Wavelength  

(nm) 

Expected Mass  

(g/mol) 

JWH-018  

pentanoic acid 
218, 316 371.4 

JWH-073  

butanoic acid 
218, 246, 315 357.4 

QSY 7 amine 560 741.08 

JWH-018  

pentanoic acid: QSY 7 amine 
218, 316, 560 1,095.42 

JWH-073  

butanoic acid: QSY 7 amine 
218, 246, 315, 560 1,081.42 

 

3. Results and Discussion 

3.1 Characterization of SC to DQ Conjugation Efficiency Via LC-MS 

Synthesizing an SC to DQ conjugate is the first step in creating a functional receptor-based 

sensor. Several considerations must be taken into account when developing a functional 

conjugate. First, the conjugate must be stable and allow the SC domain of the molecule to diffuse 

into the lipid for receptor binding. Second, the final conjugate needed to contain enough polarity 

to prevent it from remaining trapped in the lipid within FRET coupling distance of the 

receptor/QD complex.  

The SC used in synthesis must have a chemical moiety that reacts with the functional group on 

the DQ. As we were using QSY 7 functionalized with an amine (Fig. 4A) for our DQ, we needed 

an SC that contained a carboxylic acid, aldehyde, or ketone in order of descending reactivity.  
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Fig. 4   Structures of QSY 7 amine (A), JWH-073 n-butanoic acid (B), and 

JWH-018 n-pentanoic acid (C) 

There are no available SCs with carboxylic acid moieties; however, there are several phase 1 

carboxylated metabolites of common SCs that have carboxylic acids in a variety of positions. 

JWH-073 n-butanoic acid and JWH-018 n-pentanoic acid are examples of phase 1 carboxylated 

metabolites and were the compounds chosen for conjugate synthesis (Fig. 4B and C). The SCs 

and QSY 7 amine were reacted in a 1:1 molar ratio under standard peptide coupling conditions 

(HBTU/TEA/DMF) to form a final product linked via a peptide bond (Fig. 5A and B). TLC 

analysis showed complete disappearance of the parent SC and appearance of product after 4 h.   

 

Fig. 5   Structure of QSY 7:JWH-073 n-butanoic acid conjugate (A) and QSY 7:JWH-018  

n-pentanoic acid conjugates (B). The red boxes highlight the location of the peptide bond 

that links the SC to the DQ. 
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The reaction products were characterized with LC-MS (Figs. 6–8). Control runs were conducted 

with JWH-018 n-pentanoic acid, JWH-073 n-butanoic acid, and QSY 7 amine alone to determine 

retention time and separation and are shown in Figs. 6–8. The LC-MS of QSY 7 amine alone 

elutes at approximately 41 min with an observed protonated (from positive scan mode) mass of 

784.4 g/mol. This observed mass is higher than the expected mass of QSY 7 amine without its 

conjugate salt (778.4 g/mol) but is consistently observed at this value (n = 3). One explanation 

could be that there are several protonation points throughout the molecule that become 

protonated in positive scan mode. The SC JWH-073 n-butanoic acid elutes at 34.9 min with an 

observed mass
+
 of 358.2 g/mol (expected: 357.4). The good separation in elution times of  

JWH-073 compared with that of QSY 7 amine (34.9 versus 41.5, respectively) enables simplified 

product analysis. JWH-018 n-pentanoic acid elutes at approximately 35 min, also giving good 

separation between the elution time of SC and DQ. The observed mass
+
 of 372.3 g/mol is in very 

good agreement with the expected, nonionized mass of 371.4 g/mol. In addition, both of the SCs 

and QSY 7 amine were very pure, as both the LC spectrum and mass analysis of the LC peak 

showed only the parent compound and the m/2 or 2/m mass for the compounds.  
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Fig. 6   LC chromatogram (top) and mass (bottom) of QSY 7 amine in DMF. QSY 7 amine has a retention time of 

41.55 min and an observed mass
+
 of 784.4 g/mol (expected: 778.4 g/mol without hydrogen chloride salt). 
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Fig. 7   LC chromatogram (top) and mass (bottom) of JWH-073 n-butanoic acid in DMF. JWH-018 n-pentanoic 

acid has a retention time of 34.9 min and an observed mass
+
 of 358.2 g/mol (expected: 357.4g/mol 

nonionized). 
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Fig. 8   LC chromatogram (top) and mass (bottom) of JWH-018 n-pentanoic acid in DMF. JWH-018 n-pentanoic 

acid has a retention time of 35 min and an observed mass
+
 of 372.3 g/mol (expected: 371.4 g/mol 

nonionized). 

After full LC-MS characterization had been completed with the starting materials, the products 

were subjected to LC-MS and analyzed for purity (Fig. 9). The JWH-073 n-butanoic acid:QSY 7 

amine conjugate eluted at 50 min with an observed mass of 1,081.5 g/mol. The predicted mass of 

the conjugate is 1,081.42 g/mol. Thus, JWH-073 n-butanoic acid:QSY 7 amine conjugate is not 
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protonated in the mass spectrometer. The peak for the conjugate was sharp and intense, which is 

indicative of a pure product. No residual JWH-073 n-butanoic acid was observed after the 

reaction; however, there was a small amount of QSY 7 amine (purple arrow, Fig. 7) that was not 

completely consumed. As the SC and the DQ should react in a 1:1 ratio, it is possible that the 

JWH-073 n-butanoic acid was slightly degraded over the course of the reaction or that the SC 

was slightly impure upon arrival.  

 

Fig. 9   LC chromatogram (top) and mass (bottom) of the JWH-073 n-butanoic acid: QSY 7 amine conjugate in 

DMF. JWH-018 n-pentanoic acid has a retention time of 35 min and an observed mass of 1,081.5 g/mol 

(expected: 1,081.42 g/mol nonionized). 
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LC-MS analysis of the JWH-018 n-pentanoic acid:QSY 7 amine conjugate showed a reasonably 

pure product that elutes at 51.5 min. The observed mass of the conjugate was 1,095.7 g/mol, 

which is in very good agreement with the expected mass of 1,095.42 g/mol. Similar to the  

JWH-073 conjugate, the JWH-018 conjugate also shows some residual QSY 7 amine remaining 

after the conjugation reaction. This observation lends further evidence to the possibility that the 

SCs were slightly impure or degraded upon arrival from the vendor. Moreover, some 

contamination can be seen in the mass spectrometer trace of JWH-018 n-pentanoic acid shown 

by the dashed lines in Fig. 10. 

 

Fig. 10   LC chromatogram (top) and mass (bottom) of JWH-018 n-pentanoic acid:QSY 7 amine conjugate in DMF. 

JWH-018 n-pentanoic acid has a retention time of 35 min and an observed mass
+
 of 372.3 g/mol (expected: 

371.4 g/mol nonionized). 
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4. Summary and Conclusions 

We have successfully synthesized 2 SC-DQ conjugates for use in a receptor-based SC detection 

assay. To our knowledge, these conjugates are the first successful attempt at linking a dye to a 

CB compound. Both of the conjugates eluted as intense and pure peaks with good separation 

from any contaminants remaining from the reaction. Interestingly, both reactions had residual 

QSY 7 left over after the course of the reaction, which is indicative of low levels of impurities or 

degradation of the SCs received from Cayman Chemical. Further study is needed to resolve the 

CB receptor binding ability of the conjugates to determine if they can be effective in the 

detection platform. 
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List of Symbols, Abbreviations, and Acronyms 

CB1  cannabinoid receptor 1 (central) 

CB 2  cannabinoid receptor 2 (peripheral) 

DMF  dimethylformamide    

DQ                  dark quencher 

FRET fluorescence resonance energy transfer 

HBTU  O-benzotriazole-N,N,N',N'-tetramethyl-uronium-hexafluoro-phosphate 

LC-MS  liquid chromatography coupled mass spectrometry 

QD  quantum dot 

SC  synthetic cannabinoid 

TEA  triethylamine 

THC  tetrahydrocannabinol 

TLC  thin layer chromatography 
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